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A more rigorous derivation of the linearized equation of the thermal explosion previously obtained in [1] 
is given. By means of this equation the determination of the conditions for ignition of a reacting system 
involving conductive and convective heat transfer may be considerably simplified. The method of small 
perturbations is used to examine the stability of solutions of the steady-state equation of thermal explosion 
[2, a] for boundary conditions of the third kind. 

It is known [2, 8] that, within the limits of the steady-state approximation, thermal explosion theory leads, in the 
general case, to solution of the equation 

with the condition 

02 0 020 029 
Ox 2 t @2 + Oz 2 § ? exp O = O 

(1) 

0 0 +  
( -~--n ,0)B=0.  (2) 

Boundary problem (1), (2) ceases to have a real solution at some 6 = 6 .  [2, a, 5]. The value 6 = 6 .  is the critical 
value, i .e . ,  that at which ignition of the fuel mixture occurs. It is known [8, 5, 6] that when 6 < 6 .  several solutions 
exist for boundary problem (1), (2), while at 6 = 6 .  all the solutions merge, and the problem has a unique solution, i .e . ,  
the value 6 = 6,  is a branch point of the problem. Using the results of [7], it is easy to find the linear boundary problem 

02v 82v O2v 
--Ox 2 § --092 -t- ~ § ; exp 0~... v = 0, (a) 

whose eigenvalues coincide with the branch points of the nonlinear boundary problem (1), (2). In spite of the fact that 
Eq. (8) contains an unknown quantity 0. (x, .y, z, ; . ) ,  the linearized boundary problem (3), (4) considerably simplifies 
the determination of 6.  and may serve as a source of additional information. Thus, it was shown, with reference to 
many examples, in [6] that exp 0, = 2.71 . . .* on the average, and 6.  may be determined with sufficient accuracy as 
the first eigenvalue of the boundary prlblem (3), (4) when 0, (x, y, z, g,)  --~ 1. In tihe two-dimensional case Eq. (3) 
coincides in form with the equation of vibration of a diaphragm [8], if we put 

e x p [ 0 ,  (x, y, ~.)1 = p(x, y)/Y.  (5) 

If o. has been determined, say, by experiment, 6 .  may be determined using the diaphragm analogy, if one takes 
(5) into account and bears in mind that the boundary conditions correspond to an elastically supported diaphragm edge. 
Within the limits of the approximation 0 .  = 1 [1, 6, 9], the determination of 6 .  using the diaphragm analogy is particu- 
larly simple. Upper and lower boundaries may also be determined, using the extermal properties of the eigenvalues of 
boundary problem (3), (4). Substituting @ 1 < 0., for example, into (8) instead of O., we obtain, according to [10, 11], a 
value of 6 , tha t  we know to be too high, and vice versa. The value of 01(x, y) is easily determined from Eq. (1), by re- 
placing exp @ with a value, equal to 1, known to be smaller, while 02 > O. may be found from Eq. (1) by replacing 
exp 0 .  with the definitely larger value exp 00. Note that the method of successive approximations allow one to construct 
a sequence of upper and lower functions converging to 0., which we may then use to construct a sequence of upper and 
lower numbers converging to 6.. According to [7], the determination of 6 ,  using an eigenvalue of boundary problem (8), 
(4) is necessary, The sufficiency of this determination for simple forms of reaction vessel (plane, cylindrical, and spher- 
ical) will be shown below. 

*Note that the approximation exp O,  = e = 2.71 ... was obtained in [9] from other consideration, but no considera- 

tion was given to the accuracy of the value of 5.  obtained. 
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Let us examine the unsteady equation of thermal  conduction with distributed heat  sources 

0O 020 /~ a0 
- -  q - - -  - - q - ~ e x p O  (~)  

at ax" x ax  

and boundary conditions 

(oo)i a o - -  o, -&x + = o. (7) 
ax. x=o. x=1 

w e  assume that the solution of boundary problem (6), (7) does not differ much from the solution of the corresponding 
s teady-s ta te  boundary problem 

0 (x, t) = 0st (x) + .  (x, t). 

Substituting in the equation and discarding small  quant i t ies  of second order and above, we obtain an equation for the 
perturbation u(x, t): 

Ou a2u k Ou 
or- = c~x -----~ § - -  ~ + ~ exp  0st(X)U x Ox 

(8)  

with boundary conditions analogous to (7). We solve problem (8), (7) by separating the variables,  putting u : v(x) ' 
�9 exp (-~tt) and substituting it in (8). We obtain an equation for v(x): 

city k dv 
§ - - ,  - -  § [tx § a exp  0st(X)l v = 0 (9) 

dx  ~ x dx  

with boundary conditions analogous to (7). Thus, the problem of s tabi l i ty  is reduced to that of determining the sign of 
the smallest  e igenvalue of boundary problem (9), (7). If #0 > 0, any in i t ia l  temperature  distribution is gradually dissi-  

pa ted .  At ~0 = 0 this is no longer true, and at/~0 < 0 any in i t ia l  tempera ture  distribution s teadi ly builds up, and an ex-  
plosion occurs. Thus, ~t0 = 0 is a l imi t ing  condit ion for ignit ion of the fuel mixture.  We shall show that  if  0st(X ) is the 

cr i t ica l  tempera ture  profi le  in the s teady-s ta te  theory of thermal  explosion [2, 3], and 6 is the c r i t i ca l  value from the 

viewpoint of this theory, then/10 = 0. 

For a plane vessel the solution of boundary problem (1), (2) has the form 

0st(X ) = 00 - -  21n ch sx. (10) 

A solution of (10) exists, if 6 is determind from the expression 

; -  2s2(1 - -  thZs) e x p  - - - ~ - t h s  . (10') 

At a certain cr i t ica l  value of s = s,, 6 has a max imum. .  The values s,  may be found from the equation 

s ,  ths . .  ~- s  - -  th2 s , )  + ~ (s... t h s ,  - -  1) -= 0. (10") 

This equation has a single positive root, which increases as 7 increases. For a plane vessel when 6 < 6. boundary prob-  

l em (1), (2) has two solutions. At s < s,  we obtain a first solution for which 00 < 00,, and at s > s.  there is a second solu- 
tion for which 00 > 00.. For a cyl indr ica l  vessel the solution of the s teady-s ta te  problem (1), (2) has the form [12]: 

0st(X ) - -  00 - -  21n (1 -~ rex2). (11) 

A solution of (11) exists if  

(1 + m )  + m )  " 
( ~ 1 ' )  

The value m = m ,  corresponding to the max imum 6 = 6, is given by 

(12) 

In this case the first and second solutiom are s imi lar ly  determined.  For a spherical  vessel the solution of problem (1), 

(2) may  be written in the form [4]: 
x 

0 0 
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Making (13) satisfy boundary conditions (7), we obtain an equation 

~2 e x p  lq~ (~)1 d ~ + y 0 o x -2  f e x p  [q~ (g)] dg dx = 0 (14) 

0 0 o 

for determining the values of 6 for which a solution of the steady-state problem (i), (2) in a spherical vesses exists. 
ferentiating (14) with respect to00 and using the condition d6/d00 = 0 [2, 3], we get an equation for the values s = s. 
corresponding to the extremum of 5: 

Dif- 

sT 1 (1 - -  y)  f x 2 e x p  [q~ (x)] dx + y - -  s2. e x p  [q) (s .) l  = 0. (15) 
0 

According to [5], by the change of variables @ = 2 @ ~dq)/d~ and p ----- ~2 e x p  [q0 (~)1, Eq. (1) for a sphere may be 
reduced to the first-order equation 

d__S, = 2 (1 - -  p ) - -  , 

dp # p  

tt is easy to show that g always increases with variation of ~(p). Substituting ~ and p in (14), we have 

= 2p e x p  [(q~ - -  2)/71 , 

and instead of (16) we obtain 

% = 2 (p,  - -  1 ) / ( v - -  1). 

(16) 

(17) 

Here the values ~. and p .  correspond to the values 6 .  and s.. They may  easiIy be determined as the points of intersection 
of the curve ~(p) and the straight line given by (17). Having determined ~. and p,, we may  easily find 6 .  from (16). 

The figure shows a graph of ~(p) plotted up to the point (1.66, 0) using [13] and then finished quali tat ively.  The 
point (0, 2) is a singular point of the "node" type, while (1, 0) is one of the "focus" type [15]. It may  be seen from the 

figure that there is an infinite number of points of intersection of the curve ~(p) with 
q O ~ ~  / the above mentioned straight line. There are therefore infinitely many roots si.  of(15)" 

dx---~ + ~ + v = 0 .  (181 
ch~sx ] 

4 

\ 

It may  also be seen from the figure that si,  increases as y increases, it fs easy to 
show, using (14), that dO/ds > 0 at least for y -> 1, and that therefore the max imum 
temperature increases as s increases. We may  also conclude from the figure that the 
curve 6(s) is not monotonic, but has an infinite number of alternating maxima and 
minima,  diminishing in absolute value as s increases and tending asymptot ical ly  to 
the value 6 = 2 exp ( - 2 / y )  as s~oo.  The extreme values of the curve 6(s) are given 
by (16) and (17). Substituting (10) into (9), for a plane reaction vessel we obtain 

Similarly, substituting (11) into (9), for a cylindrical vessel we have 

dx s @ @ ~ @  v ==0. (19) 
x dx (i + mx~) ~ 

z?~ , /5 /) According to [4], the general solution of (18) at # = 0 is 

Graphical solution of (17): 
1) a t 7  = 0; 2) 1; 8) 2; 4) oo. 

The general solution of (19)a t  # = 0 is 

v - C 1  [ 

v = C1 th sx  § C~ (1 - -  s x  th sx).  (2o) 

1 + mx ~ + ~ } " 
(21) 

Making (20) satisfy boundary conditions (7), we obtain an equation for determining the value s. at  which/t0 = 0. This 
equation coincides with (10"). Treating (21) similarly, we obtain an equation for determining the value m .  at which 
g0 = 0. It is easy to find, by solving the equation, that this root coincides with (12). For a spherical vessel, according 
to [4], Eq. (9) has a solution at g = 0 satisfying the first of conditions (7): 

vl = Cl (2 + ~ ct ~/d ~). (2~) 
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Substituting (22) into tile second of conditions (7), we obtain (15). Thus, for three types of reaction vessel (plane, cyl-  
indrical, and spherical) we have shown that 5 .  is an eigenvalue of the boundary problem (9), (7) at # = 0, since, deter- 
mining values of s.m. from (10"), (12), and (15) and substituting them in (10'), (11') and (14), we obtain 5 = 6 .  for 

plane, cylindrical,  and spherical vessels. For a spherical vessel, an infinite number of values 5i .  exist, and, according 
to the steady-state theory of thermal explosion [2, 3], the maximum of these should be chosen. At the same time, it 

has been shown that g0 = 0 corresponds to the crit ical solution. 

The function ](s, x) in the neighborhood of s = s. may be represented in the form 

f ( s ,  x)  = f ( s , ,  x)  -~ 4s,  [1 - -  (s ,x)  th (s,.:x)] (1 - -  th2s:.:x)(s - -  s , )  -[-... (28) 

Note that the sign of the second term in (23) depends on the difference in the square brackets. This is always positive 

and vanishes only at x = 1 if s = s. corresponds to y = oo. This is easy to establish from (10"). Thus, f(s, x) increases as' 

s increases. Then to s t < s., according to the first theorem on the properties of eigenvalues [11], there corresponds 

P0 > 0, since f(s I, x) < f(s., x). For s~ > s, we have f(s., x) < f(s~, x), and therefore gt0 < 0. Once having become nega-  
tive, P0 cannot again become positive, since (10") has one positive root, and so P0 = 0 uniquely. 

In the neighborhood of m = m.  the function F(m, x) has the form 

- -  * ' ( m - - m , ) 4 - .  (24) F(m,  x) = F ( m , ,  x ) +  8(1 m x2~ 2 
(1 +m,x~) ~ ' ""  

Since, according to (12), for any y m .  is always less than one, it follows from (24) that in the neighborhood of m = m .  

F(m, x) is a monotonical ly increasing function of m. Then, by similar reasoning, we reach the conclusion that P0 > 0 
for m 1 < m,, and hence the solution is stable, while that of (11) is unstable. Because there is an m.  for each 7, ~0, having 

once become negative, will never be positive. Thus, solutions of the first type for plane and cylindrical  vessels are 

always stable, and those of the second unstable. In the neighborhood of s = s. the function .(s ,  x) has the form 

S I . . .  O ( s ,  x)  = q ) ( s , ,  x)-~- 2s ,  exp  [q~ (s,x)] ~(s : .~x ) ( s - -  , )  -~ (25) 

It is easy to see that the sign of the second term in (25) depends on the sign of $(sex), which is positive for all  x, 
if s -< sl., and vanishes only at x = 1, if sl. corresponds to ?, = co. Then in the neighborhood of s = sl. r x) is a mono- 

tonical ly increasing function, and, using the theorem cited [11], we may assert that, when s < sl., the solution of (13) . 
satisfying this value of s is stable, while when s > st.  it is unstable. This method cannot be used to examine the stability 

of the solution in the neighborhood of all  the other points s = sl., apart from the first, since in this case *(s.x) may be 

negative for x ~ 1. Since the values of s at which P0 = 0 are not unique, the method employed does not enable one to 

assert that the solution of (13) is unstable for all  s > sb,,. The above investigation for a spherical reaction vessel is valid 

for the near neighborhood of s = si., i . e . ,  is local in character. 

NOTATION 

0 = E (T - -  To)/P.T' ~ - dimensionless temperature; V = a r/k  - Blot number;  r - characteristic length of region D 

qr~ exp ( - -  ~ T o )  
on which Eq. (1) is defined; B - boundary of region D; g = R T g  : TO - ambient  temperature; E - ac t i -  

vation energy; q - c a l o r i f i c  value Of fuel; k - t h e r m a l  conductivity; k0 - p r e - e x p o n e n t i a l  factor; R - u n i v e r s a l  gas 

constant; 00 - maximum dimensionless temperature in reaction vessel; O. - cri t ical  solution of boundary problem (1), 

(2) satisfying 5 = 5.; p(x, y) - diaphragm density per unit  surface area; F - diaphragm tension; Ost(X ) - solution of 

steady-state boundary problem (1), (2) for simple geometries; x, y, z - dimensionless coordinates; c~ - heat transfer 
S o . 

coefficient;  P0 - least eigenvalue of boundary problem (9), (7); s = l / g  exp 00/2, ~ = s x ,  m = -~-, C v C 2 - arbitrary con- 

stants; t = TaZr "~,, - dimensionless t ime; a - thermal diffusivity; r - t ime;  qD=0--00; f (s, x) = 2 s  2 (1--th 2 sx); F (m, x)-- 

8m 
�9 �9 (s, x) = 2s 2 exp [q~ (sx)l; k = 1, 2, 3 - for plane, cylindrical,  and spherical vessels, respectively; 5i .si .  - 

(1 +mx~)~ ' 
successive roots of system of equations (14), (15); i = 1, 2, S... ; 00~n - derivative with respect to normal to boundary B. 
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